Related - Stackdriver 42
- Flink 165
- Hadoop 832
- Amazon Redshift 910
- Data Warehouse 3,163
- Big Data 2,559
- Scala 1,123
- Kafka 2,818
- Snowflake 2,093
- BigQuery 1,144
- Azure Synapse Analytics 754
- NoSQL 2,653
- Data Lake 1,330
- Azure 19,699
- GCP 8,057
More
|
51 to 75 of 144 Permanent Apache Beam Jobs
London, England, United Kingdom GroupM
architectures (Lambda, Fargate, Cloud Run, et al.) and a clear understanding of when not to use them. Experience with message queues (SQS, PubSub, RabbitMQ etc.) and data pipelines (Kafka, Beam, Kinesis, etc.) You are an effective team player with effective communication, presentation and influencing skills. You have a passion for improving coding and development practices. You have worked with More ❯
London, England, United Kingdom GroupM
architectures (Lambda, Fargate, Cloud Run, et al.) and a clear understanding of when not to use them. Experience with message queues (SQS, PubSub, RabbitMQ etc.) and data pipelines (Kafka, Beam, Kinesis, etc.). Effective team player with excellent communication, presentation, and influencing skills. Passion for improving coding and development practices. Experience working with microservices communicating over a range of More ❯
for real-world applications such as fraud detection, network analysis, and knowledge graphs. - Optimize performance of graph queries and design for scalability. - Support ingestion of large-scale datasets using Apache Beam, Spark, or Kafka into GCP environments. - Implement metadata management, security, and data governance using Data Catalog and IAM. - Work across functional teams and clients in diverse EMEA More ❯
London, England, United Kingdom Ampstek
for real-world applications such as fraud detection, network analysis, and knowledge graphs. - Optimize performance of graph queries and design for scalability. - Support ingestion of large-scale datasets using Apache Beam, Spark, or Kafka into GCP environments. - Implement metadata management, security, and data governance using Data Catalog and IAM. - Work across functional teams and clients in diverse EMEA More ❯
London, England, United Kingdom Hybrid / WFH Options So Energy
machine learning purposes. Expertise in design of data solutions for BigQuery. Expertise in logical and physical data modelling. Hands-on experience using Google Dataflow, GCS, cloud functions, BigQuery, DataProc, Apache Beam (Python) in designing data transformation rules for batch and data streaming. Solid Python programming skills and using Apache Beam (Python). Structure of CI/ More ❯
Chelmsford, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Ipswich, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Lincoln, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Woking, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Derby, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Shrewsbury, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Cambridge, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Northampton, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Cheltenham, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Slough, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Doncaster, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Brighton, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Bradford, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Maidstone, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Bath, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Manchester, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Liverpool, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Colchester, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Nottingham, England, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
Cardiff, Wales, United Kingdom JR United Kingdom
Kubernetes). Preferred Skills: Experience with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model explainability techniques (e.g., SHAP, LIME … . Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
|
|