Remote Kubeflow Jobs in the UK

17 of 17 Remote Kubeflow Jobs in the UK

Machine Learning Engineer

City of London, London, United Kingdom
Hybrid / WFH Options
Experis UK
PyTorch, scikit-learn, pandas, NumPy). Solid understanding of machine learning algorithms , statistical modelling , and deep learning architectures . Hands-on experience with MLOps tools and frameworks (e.g., MLflow, Kubeflow, SageMaker, Vertex AI). Experience with data engineering concepts — ETL pipelines, data lakes, and cloud data platforms. Proficiency with cloud services (AWS, Azure, or GCP) for model deployment and orchestration. More ❯
Posted:

Machine Learning Engineer

London Area, United Kingdom
Hybrid / WFH Options
Experis UK
PyTorch, scikit-learn, pandas, NumPy). Solid understanding of machine learning algorithms , statistical modelling , and deep learning architectures . Hands-on experience with MLOps tools and frameworks (e.g., MLflow, Kubeflow, SageMaker, Vertex AI). Experience with data engineering concepts — ETL pipelines, data lakes, and cloud data platforms. Proficiency with cloud services (AWS, Azure, or GCP) for model deployment and orchestration. More ❯
Posted:

Machine Learning Engineer

london, south east england, united kingdom
Hybrid / WFH Options
Experis UK
PyTorch, scikit-learn, pandas, NumPy). Solid understanding of machine learning algorithms , statistical modelling , and deep learning architectures . Hands-on experience with MLOps tools and frameworks (e.g., MLflow, Kubeflow, SageMaker, Vertex AI). Experience with data engineering concepts — ETL pipelines, data lakes, and cloud data platforms. Proficiency with cloud services (AWS, Azure, or GCP) for model deployment and orchestration. More ❯
Posted:

Machine Learning Engineer

london (city of london), south east england, united kingdom
Hybrid / WFH Options
Experis UK
PyTorch, scikit-learn, pandas, NumPy). Solid understanding of machine learning algorithms , statistical modelling , and deep learning architectures . Hands-on experience with MLOps tools and frameworks (e.g., MLflow, Kubeflow, SageMaker, Vertex AI). Experience with data engineering concepts — ETL pipelines, data lakes, and cloud data platforms. Proficiency with cloud services (AWS, Azure, or GCP) for model deployment and orchestration. More ❯
Posted:

Machine Learning Engineer

slough, south east england, united kingdom
Hybrid / WFH Options
Experis UK
PyTorch, scikit-learn, pandas, NumPy). Solid understanding of machine learning algorithms , statistical modelling , and deep learning architectures . Hands-on experience with MLOps tools and frameworks (e.g., MLflow, Kubeflow, SageMaker, Vertex AI). Experience with data engineering concepts — ETL pipelines, data lakes, and cloud data platforms. Proficiency with cloud services (AWS, Azure, or GCP) for model deployment and orchestration. More ❯
Posted:

Machine Learning Engineer

City of London, London, United Kingdom
Hybrid / WFH Options
Experis
experience in developing and deploying machine learning models in production. Solid understanding of data structures, algorithms, and software engineering principles. Experience with ML pipelines and orchestration tools (e.g., Airflow, Kubeflow, MLflow). Proficiency in working with cloud services (AWS, GCP, or Azure). Strong understanding of CI/CD, containerisation (Docker), and orchestration (Kubernetes). Excellent problem-solving skills and More ❯
Posted:

Machine Learning Engineer

London Area, United Kingdom
Hybrid / WFH Options
Experis
experience in developing and deploying machine learning models in production. Solid understanding of data structures, algorithms, and software engineering principles. Experience with ML pipelines and orchestration tools (e.g., Airflow, Kubeflow, MLflow). Proficiency in working with cloud services (AWS, GCP, or Azure). Strong understanding of CI/CD, containerisation (Docker), and orchestration (Kubernetes). Excellent problem-solving skills and More ❯
Posted:

Machine Learning Engineer

london, south east england, united kingdom
Hybrid / WFH Options
Experis
experience in developing and deploying machine learning models in production. Solid understanding of data structures, algorithms, and software engineering principles. Experience with ML pipelines and orchestration tools (e.g., Airflow, Kubeflow, MLflow). Proficiency in working with cloud services (AWS, GCP, or Azure). Strong understanding of CI/CD, containerisation (Docker), and orchestration (Kubernetes). Excellent problem-solving skills and More ❯
Posted:

Machine Learning Engineer

london (city of london), south east england, united kingdom
Hybrid / WFH Options
Experis
experience in developing and deploying machine learning models in production. Solid understanding of data structures, algorithms, and software engineering principles. Experience with ML pipelines and orchestration tools (e.g., Airflow, Kubeflow, MLflow). Proficiency in working with cloud services (AWS, GCP, or Azure). Strong understanding of CI/CD, containerisation (Docker), and orchestration (Kubernetes). Excellent problem-solving skills and More ❯
Posted:

Machine Learning Engineer

slough, south east england, united kingdom
Hybrid / WFH Options
Experis
experience in developing and deploying machine learning models in production. Solid understanding of data structures, algorithms, and software engineering principles. Experience with ML pipelines and orchestration tools (e.g., Airflow, Kubeflow, MLflow). Proficiency in working with cloud services (AWS, GCP, or Azure). Strong understanding of CI/CD, containerisation (Docker), and orchestration (Kubernetes). Excellent problem-solving skills and More ❯
Posted:

Software Engineer - AI / ML / Python (Lead Level)

London, United Kingdom
Hybrid / WFH Options
N Consulting Limited
algorithms , NLP , deep learning , and statistical methods. Experience with Docker, Kubernetes , and cloud platforms like AWS/Azure/GCP . Hands-on experience with MLOps tools (MLflow, SageMaker, Kubeflow, etc.) and version control systems. Strong knowledge of APIs, microservices architecture, and CI/CD pipelines. Proven experience in leading teams, managing stakeholders, and delivering end-to-end AI/ More ❯
Employment Type: Permanent
Salary: GBP Annual
Posted:

Data/ML Ops Engineer

Erskine, Renfrewshire, Scotland, United Kingdom
Hybrid / WFH Options
DXC Technology
as: pandas, NumPy, scikit-learn XGBoost, LightGBM, CatBoost TensorFlow, Keras, PyTorch Experience with model deployment and serving tools: ONNX, TensorRT, TensorFlow Serving, TorchServe Familiarity with ML lifecycle tools: MLflow, Kubeflow, Azure ML Pipelines Experience working with distributed data processing using PySpark. Solid understanding of software engineering principles and version control (e.g., Git). Excellent problem-solving skills and ability to More ❯
Employment Type: Permanent, Work From Home
Posted:

Data/ML Ops Engineer

Newcastle Upon Tyne, Tyne and Wear, North East, United Kingdom
Hybrid / WFH Options
DXC Technology
as: pandas, NumPy, scikit-learn XGBoost, LightGBM, CatBoost TensorFlow, Keras, PyTorch Experience with model deployment and serving tools: ONNX, TensorRT, TensorFlow Serving, TorchServe Familiarity with ML lifecycle tools: MLflow, Kubeflow, Azure ML Pipelines Experience working with distributed data processing using PySpark. Solid understanding of software engineering principles and version control (e.g., Git). Excellent problem-solving skills and ability to More ❯
Employment Type: Permanent, Work From Home
Posted:

Lead Machine Learning Engineer London, England, United Kingdom

London, United Kingdom
Hybrid / WFH Options
Zego
systems. Key Responsibilities Build model lifecycle tooling (deployment, monitoring and alerting) for our predictive models (for example claims cost, conversion, retention, market models) Maintain and improve the development environment (Kubeflow) used by our Data Scientists and Actuaries Develop and maintain pricing analytics tools that enable faster impact assessments, reducing manual work Collaborate with the technical pricing, street pricing and product More ❯
Employment Type: Permanent
Salary: GBP Annual
Posted:

ML/Ops Engineer

United Kingdom
Hybrid / WFH Options
Inspirec
environments. • Collaborate closely with data scientists and software engineers to productionize prototypes into scalable, maintainable solutions. Essential Skills & Experienc: • Hands-on experience with ML Ops tools such as MLflow, Kubeflow, Amazon SageMaker, Vertex AI, orequivalent platforms. • Deep understanding of cloud infrastructure services (AWS, Azure, GCP). • Strong experience with CI/CD practices and containerization tools (Docker, Kubernetes). • Knowledge More ❯
Posted:

ML Engineer

Erskine, Renfrewshire, Scotland, United Kingdom
Hybrid / WFH Options
DXC Technology
and stakeholders to translate business requirements into technical solutions. Optimize and deploy models using tools like TensorFlow Serving, TorchServe, ONNX, and TensorRT. Build and manage ML pipelines using MLflow, Kubeflow, and Azure ML Pipelines. Work with large-scale data using PySpark and integrate models into production environments. Monitor model performance and retrain as needed to ensure accuracy and efficiency. Collaborate … as: pandas, NumPy, scikit-learn XGBoost, LightGBM, CatBoost TensorFlow, Keras, PyTorch Experience with model deployment and serving tools: ONNX, TensorRT, TensorFlow Serving, TorchServe Familiarity with ML lifecycle tools: MLflow, Kubeflow, Azure ML Pipelines Experience working with distributed data processing using PySpark. Solid understanding of software engineering principles and version control (e.g., Git). Excellent problem-solving skills and ability to … as: pandas, NumPy, scikit-learn XGBoost, LightGBM, CatBoost TensorFlow, Keras, PyTorch Experience with model deployment and serving tools: ONNX, TensorRT, TensorFlow Serving, TorchServe Familiarity with ML lifecycle tools: MLflow, Kubeflow, Azure ML Pipelines Experience working with distributed data processing using PySpark. Solid understanding of software engineering principles and version control (e.g., Git). Excellent problem-solving skills and ability to More ❯
Employment Type: Permanent, Work From Home
Posted:

ML Engineer

Newcastle Upon Tyne, Tyne and Wear, North East, United Kingdom
Hybrid / WFH Options
DXC Technology
and stakeholders to translate business requirements into technical solutions. Optimize and deploy models using tools like TensorFlow Serving, TorchServe, ONNX, and TensorRT. Build and manage ML pipelines using MLflow, Kubeflow, and Azure ML Pipelines. Work with large-scale data using PySpark and integrate models into production environments. Monitor model performance and retrain as needed to ensure accuracy and efficiency. Collaborate … as: pandas, NumPy, scikit-learn XGBoost, LightGBM, CatBoost TensorFlow, Keras, PyTorch Experience with model deployment and serving tools: ONNX, TensorRT, TensorFlow Serving, TorchServe Familiarity with ML lifecycle tools: MLflow, Kubeflow, Azure ML Pipelines Experience working with distributed data processing using PySpark. Solid understanding of software engineering principles and version control (e.g., Git). Excellent problem-solving skills and ability to … as: pandas, NumPy, scikit-learn XGBoost, LightGBM, CatBoost TensorFlow, Keras, PyTorch Experience with model deployment and serving tools: ONNX, TensorRT, TensorFlow Serving, TorchServe Familiarity with ML lifecycle tools: MLflow, Kubeflow, Azure ML Pipelines Experience working with distributed data processing using PySpark. Solid understanding of software engineering principles and version control (e.g., Git). Excellent problem-solving skills and ability to More ❯
Employment Type: Permanent, Work From Home
Posted:
Kubeflow
10th Percentile
£60,000
25th Percentile
£64,688
Median
£85,000
75th Percentile
£97,500
90th Percentile
£107,250