software engineering, machine learning, data science, or artificial intelligence. • Strong proficiency in Python. • Experience using common NLP and/or ML Python frameworks, such as PyTorch,TensorFlow, Transformers/HuggingFace, and NumPy. • LLM skills including fine-tuning, LLMOps, function-calling, and retrieval augmented generation (RAG). • Experience following software best practices in team settings, including version control More ❯
teams Optimise big data and cloud infrastructure (Azure/GCP) Requirements: 3+ years in data engineering or MLOps Strong Python and exposure to ML/AI libraries (e.g. PyTorch, HuggingFace) Proficient with Airflow, DBT, Docker, Kubernetes Cloud deployment experience (Azure preferred) Backend/API development experience with client-facing exposure Interested? Please apply below. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯