similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
fields of Information Retrieval, NLP, Data-centric AI, and Knowledge Graphs Track record of driving innovation, publishing and communicating your work in industry At least 3 years' experience in PyTorch/Tensorflow At least 3 years' experience with machine learning At least 1 year of experience working with AWS Capital One will consider sponsoring a new qualified applicant for employment More ❯
Machine Learning. • Demonstrated experience with innovative solution development, developing proofs-of-concept, first-of-a-kind solutions, and technology transfer. Technical Skills: • Strong software development skills in Python and Pytorch are required. • Strong application experience of Machine Learning with physical systems is required. • Good understanding of digital twins, use of ML with Digital Twins, applications to sustainability • A strong science More ❯
Cambridge, England, United Kingdom Hybrid / WFH Options
IC Resources
PhD in Computer Science, Machine Learning or related discipline 3+ years’ experience developing ML models, with a strong focus on medical imaging Proven track record using deep learning frameworks (PyTorch/TensorFlow) Solid Python skills and familiarity with cloud or MLOps tools (Docker, Kubernetes, MLFlow) Understanding of data pipelines and image analysis techniques (segmentation, registration, feature extraction) Benefits Share options More ❯
cambridge, east anglia, united kingdom Hybrid / WFH Options
IC Resources
PhD in Computer Science, Machine Learning or related discipline 3+ years’ experience developing ML models, with a strong focus on medical imaging Proven track record using deep learning frameworks (PyTorch/TensorFlow) Solid Python skills and familiarity with cloud or MLOps tools (Docker, Kubernetes, MLFlow) Understanding of data pipelines and image analysis techniques (segmentation, registration, feature extraction) Benefits Share options More ❯