development experience with Terraform or CloudFormation. · Understanding of ML development workflow and knowledge of when and how to use dedicated hardware. · Significant experience with Apache Spark or any other distributed data programming frameworks (e.g. Flink, Hadoop, Beam) · Familiarity with Databricks as a data and AI platform or the More ❯
development experience with Terraform or CloudFormation. Understanding of ML development workflow and knowledge of when and how to use dedicated hardware. Significant experience with Apache Spark or any other distributed data programming frameworks (e.g. Flink, Hadoop, Beam) Familiarity with Databricks as a data and AI platform or the More ❯
Are You have proven experience in data engineering, including creating reliable, efficient, and scalable data pipelines using data processing frameworks such as Scio, DataFlow, Beam or equivalent. You are comfortable working with large datasets using SQL and data analytics platforms such as BigQuery. You are knowledgeable in cloud-based More ❯
Degree in CS, maths, statistics, engineering, physics or similar Desirable Requirements: NoSQL databases - Elasticsearch, MongoDB etc (bonus) Modern Data tools such as Spark/Beam (bonus) Streaming technologies such as Spark/Akka Streams (bonus) Tagged as: Industry , NLP , United Kingdom More ❯
to build data solutions, such as SQL Server/Oracle , experience with relational and dimensional data structures Experience in using distributed frameworks ( Spark, Flink, Beam, Hadoop ) Proficiency in infrastructure as code (IaC) using Terraform Experience with CI/CD pipelines and related tools/frameworks Containerisation Good knowledge of … Good understating of cloud storage, networking and resource provisioning It would be great if you had... Certification in GCP "Professional Data Engineer" Certification in Apache Kafka (CCDAK) Proficiency across the data lifecycle WORKING FOR US Our focus is to ensure we are inclusive every day, building an organisation that More ❯
to build data solutions, such as SQL Server/Oracle , experience with relational and dimensional data structures. Experience in using distributed frameworks ( Spark, Flink, Beam, Hadoop ). Proficiency in infrastructure as code (IaC) using Terraform . Experience with CI/CD pipelines and related tools/frameworks. Containerisation Good … understanding of cloud storage, networking and resource provisioning. It would be great if you had Certification in GCP "Professional Data Engineer". Certification in Apache Kafka (CCDAK). Proficiency across the data lifecycle. WORKING FOR US Our focus is to ensure we are inclusive every day, building an organisation More ❯
Bristol, England, United Kingdom Hybrid / WFH Options
Lloyds Bank plc
to build data solutions, such as SQL Server/Oracle , experience with relational and dimensional data structures. Experience in using distributed frameworks ( Spark, Flink, Beam, Hadoop ). Proficiency in infrastructure as code (IaC) using Terraform . Experience with CI/CD pipelines and related tools/frameworks. Containerisation: Good … understanding of cloud storage, networking, and resource provisioning. It would be great if you had... Certification in GCP “Professional Data Engineer”. Certification in Apache Kafka (CCDAK). Proficiency across the data lifecycle. Working for us: Our focus is to ensure we are inclusive every day, building an organisation More ❯
London, England, United Kingdom Hybrid / WFH Options
Lloyds Banking Group
to build data solutions, such as SQL Server/Oracle , experience with relational and dimensional data structures. Experience in using distributed frameworks ( Spark, Flink, Beam, Hadoop ). Proficiency in infrastructure as code (IaC) using Terraform . Experience with CI/CD pipelines and related tools/frameworks. Containerisation Good … understanding of cloud storage, networking, and resource provisioning. It would be great if you had... Certification in GCP “Professional Data Engineer”. Certification in Apache Kafka (CCDAK). Proficiency across the data lifecycle. WORKING FOR US Our focus is to ensure we are inclusive every day, building an organisation More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯
with feature stores (e.g., Feast, Tecton). Knowledge of distributed training (e.g., Horovod, distributed PyTorch). Familiarity with big data tools (e.g., Spark, Hadoop, Beam). Understanding of NLP, computer vision, or time series analysis techniques. Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases). Experience with model … Familiarity with reinforcement learning or generative AI models. Tools & Technologies: Languages: Python, SQL (optionally: Scala, Java for large-scale systems) Data Processing: Pandas, NumPy, Apache Spark, Beam Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases #J-18808-Ljbffr More ❯