large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
CI/CD pipelines, automated testing, and monitoring, applying MLOps practices such as versioning, retraining, and drift detection (tools: MLflow, Azure ML, Databricks) Leverage both open-source frameworks (LangChain, HuggingFace, etc.) and enterprise platforms (Azure OpenAI, Databricks, etc.) to deliver production ready, scalable AI solutions Implement generative AI and advanced analytics features, including embeddings, retrieval-augmented generation More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯
large language model inference, similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. More ❯