LLMs in a commercial or research setting. Strong knowledge of context engineering, LLM fine-tuning, and evaluation of non-deterministic systems. Proficiency in Python and deep learning frameworks (e.g., PyTorch). Excellent problem-solving, communication, and collaboration skills. Experience working in agile, cross-functional teams. Why Join Us? Join our team and contribute to a culture of innovation, collaboration, and More ❯
in Artificial Intelligence. Skills, Knowledge, and Experience Technical proficiency You write production-grade, scalable Python code, ensuring that your models are robust, maintainable, and optimised for performance. Comfortable with PyTorch Knowledge of Transformer-based models Knowledge of Large Language Models (LLMs) Proven experience of having delivered successful machine learning projects into production Strong understanding of software development fundamentals, in particular More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯
similarity search, guardrails, model evaluation, experimentation, governance, and observability, etc. Leverage a broad stack of Open Source and SaaS AI technologies such as AWS Ultraclusters, Huggingface, VectorDBs, Nemo Guardrails, PyTorch, and more. Invent and introduce state-of-the-art LLM optimization techniques to improve the performance - scalability, cost, latency, throughput - of large scale production AI systems. Contribute to the technical More ❯